Publication
Title
Dynamical quantum depletion in polariton condensates
Author
Abstract
We present a theoretical study of the quantum depletion of microcavity polaritons that are excited with a resonant laser pulse. The dynamics of the quantum fluctuations are interpreted in the context of quantum quenches in general and in terms of the dynamical Casimir effect in particular. We compute the time evolution of the first- and second-order correlation functions of the polariton condensate. Our theoretical modeling is based on the truncated Wigner approximation for interacting Bose gases. For homogeneous systems, analytical results are obtained in the linearized Bogoliubov approximation. Inhomogeneous systems are studied numerically by Monte Carlo simulations.
Language
English
Source (journal)
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
Publication
Lancaster, Pa : 2015
ISSN
1098-0121 [print]
1550-235X [online]
DOI
10.1103/PHYSREVB.92.195309
Volume/pages
92 :19 (2015) , 7 p.
Article Reference
195309
ISI
000365507500004
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 15.01.2016
Last edited 09.10.2023
To cite this reference