Publication
Title
Functional conservation in the SIAMESE-RELATED family of cyclin-dependent kinase inhibitors in land plants
Author
Abstract
The best-characterized members of the plant-specific SIAMESE-RELATED (SMR) family of cyclin-dependent kinase inhibitors regulate the transition from the mitotic cell cycle to endoreplication, also known as endoreduplication, an altered version of the cell cycle in which DNA is replicated without cell division. Some other family members are implicated in cell cycle responses to biotic and abiotic stresses. However, the functions of most SMRs remain unknown, and the specific cyclin-dependent kinase complexes inhibited by SMRs are unclear. Here, we demonstrate that a diverse group of SMRs, including an SMR from the bryophyte Physcomitrella patens, can complement an Arabidopsis thaliana siamese (sim) mutant and that both Arabidopsis SIM and P. patens SMR can inhibit CDK activity in vitro. Furthermore, we show that Arabidopsis SIM can bind to and inhibit both CDKA; 1 and CDKB1; 1. Finally, we show that SMR2 acts to restrict cell proliferation during leaf growth in Arabidopsis and that SIM, SMR1/LGO, and SMR2 play overlapping roles in controlling the transition from cell division to endoreplication during leaf development. These results indicate that differences in SMR function in plant growth and development are primarily due to differences in transcriptional and posttranscriptional regulation, rather than to differences in fundamental biochemical function.
Language
English
Source (journal)
The plant cell. - Rockville, Md
Publication
Rockville, Md : 2015
ISSN
1040-4651
Volume/pages
27:11(2015), p. 3065-3080
ISI
000368295800006
Full text (Publishers DOI)
Full text (publishers version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 16.02.2016
Last edited 22.04.2017
To cite this reference