Publication
Title
Fluorescence in vivo hybridization (FIVH) for detection of Helicobacter pylori infection in a C57BL/6 mouse model
Author
Abstract
Introduction In this study, we applied fluorescence in vivo hybridization (FIVH) using locked nucleic acid (LNA) probes targeting the bacterial rRNA gene for in vivo detection of H. pylori infecting the C57BL/6 mouse model. A previously designed Cy3_HP_LNA/2OMe_PS probe, complementary to a sequence of the H. pylori 16S rRNA gene, was used. First, the potential cytotoxicity and genotoxicity of the probe was assessed by commercial assays. Further, the performance of the probe for detecting H. pylori at different pH conditions was tested in vitro, using fluorescence in situ hybridization (FISH). Finally, the efficiency of FIVH to detect H. pylori SS1 strain in C57BL/6 infected mice was evaluated ex vivo in mucus samples, in cryosections and paraffin-embedded sections by epifluorescence and confocal microscopy. Results H. pylori SS1 strain infecting C57BL/6 mice was successfully detected by the Cy3_HP_LNA/2OMe_PS probe in the mucus, attached to gastric epithelial cells and colonizing the gastric pits. The specificity of the probe for H. pylori was confirmed by microscopy. Conclusions In the future this methodology can be used in combination with a confocal laser endomicroscope for in vivo diagnosis of H. pylori infection using fluorescent LNA probes, which would be helpful to obtain an immediate diagnosis. Our results proved for the first time that FIVH method is applicable inside the body of a higher-order animal.
Language
English
Source (journal)
PLoS ONE
Publication
2016
ISSN
1932-6203
DOI
10.1371/JOURNAL.PONE.0148353
Volume/pages
11 :2 (2016) , 18 p.
Article Reference
e0148353
ISI
000369554000076
Pubmed ID
26848853
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
The role of bacterial biofilms as a major cause of therapeutic failure in intensive care units (ICU): an in vitro and in vivo study of 'biofilm' virulence factors.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 08.03.2016
Last edited 07.12.2024
To cite this reference