Publication
Title
3D interconnected hierarchically macro-mesoporous networks optimized by biomolecular self-assembly for high performance lithium ion batteries
Author
Abstract
Biomolecular self-assembly is an effective synthesis strategy for material fabrication with unique structural complexity and properties. For the first time, we integrate inner-particle mesoporosity in a three-dimensional (3D) interconnected macroporous TiO2 structure via the mediation of biomolecular self-assembly of the lipids and proteins from rape pollen coats and Pluronic P123 to optimize the structure for high performance lithium storage. Benefitting from the hierarchically 3D interconnected macro-mesoporous structure with high surface area, small nanocrystallites and good electrolyte permeation, such a unique porous structure demonstrates superior electrochemical performance, with high initial coulombic efficiency (94.4% at 1C) and a reversible discharge capacity of 161, 145, 127 and 97 mA h g−1 at 2, 5, 10 and 20C for 1000 cycles, with 79.3%, 89.9%, 90.1% and 87.4% capacity retention, respectively. Using SEM, TEM and HRTEM observations on the TiO2 materials before and after cycling, we verify that the inner-particle mesoporosity and the Li2Ti2O4 nanocrystallites formed during the cycling process in interconnected macroporous structure greatly enhance the cycle life and rate performance. Our demonstration here offers opportunities towards developing and optimizing hierarchically porous structures for energy storage applications via biomolecular self-assembly.
Language
English
Source (journal)
RSC advances
Publication
2016
ISSN
2046-2069
DOI
10.1039/C6RA00332J
Volume/pages
6 :32 (2016) , p. 26856-26862
ISI
000372253700043
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
ESTEEM 2 - Enabling science and technology through European electron microscopy.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 21.03.2016
Last edited 09.10.2023
To cite this reference