Title
Shawn, the drosophila homolog of SLC25A39/40, is a mitochondrial carrier that promotes neuronal survival Shawn, the drosophila homolog of SLC25A39/40, is a mitochondrial carrier that promotes neuronal survival
Author
Faculty/Department
Faculty of Sciences. Biology
Publication type
article
Publication
Baltimore, Md ,
Subject
Human medicine
Source (journal)
The journal of neuroscience. - Baltimore, Md
Volume/pages
36(2016) :6 , p. 1914-1929
ISSN
0270-6474
ISI
000369964500012
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Mitochondria play an important role in the regulation of neurotransmission, and mitochondrial impairment is a key event in neurodegeneration. Cells rely on mitochondrial carrier proteins of the SLC25 family to shuttle ions, cofactors, and metabolites necessary for enzymatic reactions. Mutations in these carriers often result in rare but severe pathologies in the brain, and some of the genes, including SLC25A39 and SLC25A40, reside in susceptibility loci of severe forms of epilepsy. However, the role of most of these carriers has not been investigated in neurons in vivo. We identified shawn, the Drosophila homolog of SLC25A39 and SLC25A40, in a genetic screen to identify genes involved in neuronal function. Shawn localizes to mitochondria, and missense mutations result in an accumulation of reactive oxygen species, mitochondrial dysfunction, and neurodegeneration. Shawn regulates metal homeostasis, and we found in shawn mutants increased levels of manganese, calcium, and mitochondrial free iron. Mitochondrial mutants often cannot maintain synaptic transmission under demanding conditions, but shawn mutants do, and they also do not display endocytic defects. In contrast, shawn mutants harbor a significant increase in neurotransmitter release. Our work provides the first functional annotation of these essential mitochondrial carriers in the nervous system, and the results suggest that metal imbalances and mitochondrial dysfunction may contribute to defects in synaptic transmission and neuronal survival.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000369964500012&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000369964500012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
https://repository.uantwerpen.be/docman/iruaauth/0f559f/132238.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000369964500012&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle