Title
Dysfunctional noise cancelling of the rostral anterior cingulate cortex in tinnitus patientsDysfunctional noise cancelling of the rostral anterior cingulate cortex in tinnitus patients
Author
Faculty/Department
Faculty of Medicine and Health Sciences
Research group
Translational Neurosciences (TNW)
Publication type
article
Publication
Subject
Engineering sciences. Technology
Source (journal)
PLoS ONE
Volume/pages
10(2015):4, 18 p.
ISSN
1932-6203
1932-6203
Article Reference
e0123538
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Background Peripheral auditory deafferentation and central compensation have been regarded as the main culprits of tinnitus generation. However, patient-to-patient discrepancy in the range of the percentage of daytime in which tinnitus is perceived (tinnitus awareness percentage, 0 - 100%), is not fully explicable only by peripheral deafferentation, considering that the deafferentation is a stable persisting phenomenon but tinnitus is intermittently perceived in most patients. Consequently, the involvement of a dysfunctional noise cancellation mechanism has recently been suggested with regard to the individual differences in reported tinnitus awareness. By correlating the tinnitus awareness percentage with resting-state source-localized electroencephalography findings, we may be able to retrieve the cortical area that is negatively correlated with tinnitus awareness percentage, and then the area may be regarded as the core of the noise cancelling system that is defective in patients with tinnitus. Methods and Findings Using resting-state cortical oscillation, we investigated 80 tinnitus patients by correlating the tinnitus awareness percentage with their source-localized cortical oscillatory activity and functional connectivity. The activity of bilateral rostral anterior cingulate cortices (ACCs), left dorsal-and pregenual ACCs for the delta band, bilateral rostral/pregenual/subgenual ACCs for the theta band, and left rostral/pregenual ACC for the beta 1 band displayed significantly negative correlations with tinnitus awareness percentage. Also, the connectivity between the left primary auditory cortex (A1) and the rostral ACC, as well as between the left A1 and the subgenual ACC for the beta 1 band, were negatively correlated with tinnitus awareness percentage. Conclusions These results may designate the role of the rostral ACC as the core of the descending noise cancellation system, and thus dysfunction of the rostral ACC may result in perception of tinnitus. The present study also opens a possibility of tinnitus modulation by neuromodulatory approaches targeting the rostral ACC.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000352845100184&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000352845100184&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000352845100184&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Full text (open access)
https://repository.uantwerpen.be/docman/irua/d4db96/132514.pdf
Handle