Publication
Title
Microscale profiling of photosynthesis-related variables in a highly productive biofilm photobioreactor
Author
Abstract
In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000mol photons m(-2) s(-1)) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 mu m, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150m, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2mM was measured with 1,000mol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs. Biotechnol. Bioeng. 2016;113: 1046-1055. (c) 2015 Wiley Periodicals, Inc.
Language
English
Source (journal)
Biotechnology and bioengineering. - New York, N.Y.
Publication
New York, N.Y. : 2016
ISSN
0006-3592
DOI
10.1002/BIT.25867
Volume/pages
113 :5 (2016) , p. 1046-1055
ISI
000373476700013
Pubmed ID
26498147
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 10.05.2016
Last edited 09.10.2023
To cite this reference