Title 



Implication and axiomatization of functional and constant constraints


Author 





Abstract 



Akhtar et al. introduced equalitygenerating constraints and functional constraints as a first step towards dependencylike integrity constraints for RDF data [3]. Here, we focus on functional constraints. Since the usefulness of functional constraints is not limited to the RDF data model, we study the functional constraints in the more general setting of relations with arbitrary arity. We further introduce constant constraints and study the functional and constant constraints combined. Our main results are sound and complete axiomatizations for the functional and constant constraints, both separately and combined. These axiomatizations are derived using the chase algorithm for equalitygenerating constraints. For derivations of constant constraints, we show how every chase step can be simulated by a bounded number of applications of inference rules. For derivations of functional constraints, we show that the chase algorithm can be normalized to a more specialized symmetrypreserving chase algorithm performing socalled symmetrypreserving steps. We then show how each symmetrypreserving step can be simulated by a bounded number of applications of inference rules. The axiomatization for functional constraints is in particular applicable to the RDF data model, solving a major open problem of Akhtar et al.  

Language 



English


Source (journal) 



Annals of mathematics and artificial intelligence.  Basel 

Publication 



Basel : 2016


ISSN 



10122443


Volume/pages 



76:34(2016), p. 251279


ISI 



000374449500002


Full text (Publishers DOI) 


 

Full text (publishers version  intranet only) 


 
