Title
Mining the enriched subgraphs for specific vertices in a biological graphMining the enriched subgraphs for specific vertices in a biological graph
Author
Faculty/Department
Faculty of Sciences. Biology
Faculty of Sciences. Chemistry
Faculty of Sciences. Mathematics and Computer Science
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences . Biomedical Sciences
Research group
Advanced Database Research and Modeling (ADReM)
Department of Biomedical Sciences
Publication type
article
Publication
New York, N.Y.,
Subject
Biology
Computer. Automation
Source (journal)
IEEE/ACM transactions on computational biology and bioinformatics / Institute of Electrical and Electronics Engineers [New York, N.Y.] - New York, N.Y.
Volume/pages
(2016), p. 1-12
ISSN
1545-5963
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
In this paper, we present a subgroup discovery method to find subgraphs in a graph that are associated with a given set of vertices. The association between a subgraph pattern and a set of vertices is defined by its significant enrichment based on a Bonferroni-corrected hypergeometric probability value. This interestingness measure requires a dedicated pruning procedure to limit the number of subgraph matches that must be calculated. The presented mining algorithm to find associated subgraph patterns in large graphs is therefore designed to efficiently traverse the search space. We demonstrate the operation of this method by applying it on three biological graph data sets and show that we can find associated subgraphs for a biologically relevant set of vertices and that the found subgraphs themselves are biologically interesting.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/30603f/133943.pdf
Handle