Title
Mathematical characterizations of the wu- and hirsch- indices using two types of minimal increments
Author
Faculty/Department
Faculty of Social Sciences. Instructional and Educational Sciences
Publication type
conferenceObject
Publication
Leuven :Int soc scientometrics & informetrics-issi ,
Subject
Documentation and information
Source (journal)
14TH INTERNATIONAL SOCIETY OF SCIENTOMETRICS AND INFORMETRICS CONFERENCE (ISSI)
Source (book)
14th International-Society-of-Scientometrics-and-Informetrics Conference, (ISSI), JUL 15-20, 2013, Vienna, AUSTRIA
Volume/pages
(2013) , p. 1159-1169
ISSN
2175-1935
ISBN
978-3-200-03135-7
ISI
000353961700090
Carrier
E
Target language
English (eng)
Affiliation
University of Antwerp
Abstract
For a general increasing function f(n) (n = 1,2,3,...) we can define the most general version of the Hirsch-index being the highest rank n such that all papers on ranks 1,..., n each have at least f(n) citations. The minimum configuration to have this value of n is n papers each having f(n) citations, hence we have nf(n) citations in total. To increase the value n by one we hence need (minimally) (n+1)f(n+1)citations, an increment of I-1(n) = (n+1)f (n+1)-nf(n) citations. Define the increment of second order as I-2(n) = I-1(n+1)-I-1(n). We characterize the general Wu-index by requiring specific values of I(1()n()) and I-2(n), hence also characterizing the Hirsch-index.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000353961700090&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000353961700090&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000353961700090&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Full text (open access)
https://repository.uantwerpen.be/docman/irua/b9d3a8/134442.pdf
Handle