Publication
Title
Prevalence and trend estimation from observational data with highly variable post-stratification weights
Author
Abstract
In observational surveys, post-stratification is used to reduce bias resulting from differences between the survey population and the population under investigation. However, this can lead to inflated post-stratification weights and, therefore, appropriate methods are required to obtain less variable estimates. Proposed methods include collapsing post-strata, trimming post-stratification weights, generalized regression estimators (GREG) and weight smoothing models, the latter defined by random-effects models that induce shrinkage across post-stratum means. Here, we first describe the weight-smoothing model for prevalence estimation from binary survey outcomes in observational surveys. Second, we propose an extension of this method for trend estimation. And, third, a method is provided such that the GREG can be used for prevalence and trend estimation for observational surveys. Variance estimates of all methods are described. A simulation study is performed to compare the proposed methods with other established methods. The performance of the nonparametric GREG is consistent over all simulation conditions and therefore serves as a valuable solution for prevalence and trend estimation from observational surveys. The method is applied to the estimation of the prevalence and incidence trend of influenza-like illness using the 2010/2011 Great Influenza Survey in Flanders, Belgium.
Language
English
Source (journal)
Annals of applied statistics. - Cleveland, Ohio
Publication
Cleveland, Ohio : 2016
ISSN
1932-6157
Volume/pages
10:1(2016), p. 94-117
ISI
000378116900005
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 29.07.2016
Last edited 13.08.2017
To cite this reference