Title
Current and future conifer seed production in the Alps : testing weather factors as cues behind mastingCurrent and future conifer seed production in the Alps : testing weather factors as cues behind masting
Author
Faculty/Department
Faculty of Sciences. Biology
Research group
Department of Biology
Publication type
article
Publication
Berlin,
Subject
Biology
Source (journal)
European journal of forest research. - Berlin
Volume/pages
135(2016):4, p. 743-754
ISSN
1612-4669
ISI
000379524900012
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Temporal patterns of masting in conifer species are intriguing phenomena that have cascading effects on different trophic levels in ecosystems. Many studies suggest that meteorological cues (changes in temperature and precipitation) affect variation in seed-crop size over years. We monitored cone crops of six conifer species in the Italian Alps (1999-2013) and analysed which seasonal weather factors affected annual variation in cone production at forest community level. Larch, Norway spruce and silver fir showed masting while temporal patterns in Pinus sp. were less pronounced. We found limited support for the temperature difference model proposed by Kelly et al. Both seasonal (mainly spring and summer) temperatures and precipitations of 1 and 2 years prior to seed maturation affected cone-crop size, with no significant effect of previous year's cone crop. Next, we estimated future forest cone production until 2100, applying climate projection (using RCP 8.5 scenario) to the weather model that best predicted variation in measured cone crops. We found no evidence of long-term changes in average cone production over the twenty-first century, despite increase in average temperature and decrease in precipitation. The amplitude of predicted annual fluctuations in cone production varies over time, depending on study area. The opposite signs of temperature effects 1 and 2 years prior to seed set show that temperature differences are indeed a relevant cue. Hence, predicted patterns of masting followed by 1 or more years of poor-medium cone production suggest a high degree of resilience of alpine conifer forests under global warming scenario.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000379524900012&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000379524900012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
https://repository.uantwerpen.be/docman/iruaauth/9d9879/134939.pdf
Handle