Title
Reentrant dynamics of driven pancake vortices in layered superconductorsReentrant dynamics of driven pancake vortices in layered superconductors
Author
Faculty/Department
Faculty of Sciences. Physics
Research group
Condensed Matter Theory
Publication type
article
Publication
Subject
Physics
Source (journal)
PHYSICAL REVIEW B
Volume/pages
94(2016):2, 9 p.
ISSN
2469-9950
Article Reference
024514
ISI
000380097800006
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
The dynamics of driven pancake vortices in layered superconductors is studied using molecular-dynamics simulations. We found that, with increasing driving force, for strong interlayer coupling, the preexisted vortex lines either directly depin or first transform to two-dimensional (2D) pinned states before they are depinned, depending on the pinning strength. In a narrow region of pinning strengths, we found an interesting repinning process, which results in a negative differential resistance. For weak interlayer coupling, individually pinned pancake vortices first form disordered 2D flow and then transform to ordered three-dimensional (3D) flow with increasing driving force. However, for extremely strong pinning, the random pinning-induced thermal-like Langevin forces melt 3D vortex lines, which results in a persistent 2D flow in the fast-sliding regime. In the intermediate regime, the peak effect is found: With increasing driving force, the moving pancake vortices first crystallize to moving 3D vortex lines, and then these 3D vortex lines are melted, leading to the appearance of a reentrant 2D flow state. Our results are summarized in a dynamical phase diagram.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000380097800006&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000380097800006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Full text (open access)
https://repository.uantwerpen.be/docman/irua/1020e7/134943.pdf
Handle