Publication
Title
ЭТИЛЕН ВОВЛЕЧЕН В РЕОРГАНИЗАЦИЮ АКТИНОВОГО ЦИТОСКЕЛЕТА В ХОДЕ ГРАВИТРОПИЧЕСКОЙ РЕАКЦИИ КОРНЕЙ Arabidopsis thaliana
Author
Abstract
Gravitropism, the directed plant growth with respect to the gravity vector, is regulated by auxin and its polar transport system, several secondary messengers, and by the cytoskeleton. Recently we have shown that the actin cytoskeleton in the root transition zone of Arabidopsis thaliana (L.) Heynh was rearranged after gravistimulation (rotation by 90°): the fraction of axially aligned microfilaments decreased and the fraction of oblique and transversally-oriented microfilaments increased. In the present research we have studied the effect of ethylene and inhibitors of its synthesis on actin cytoskeleton rearrangement during the gravitropic response. Application of the ethylene releasing substance ethephon to A. thaliana seedlings led to the disassembly of actin microfilaments as well as their broad angle distribution in cells of the root transition zone. This actin rearrangement was escaped by treatment with the ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG). Another negative regulator of ethylene, salicylic acid, was shown to disturb actin microfilament rearrangement as well. We conclude that ethylene is essential for the process of actin cytoskeleton rearrangement in root cortex cells during the gravitropic bending response.
Language
Russian
Source (journal)
Fiziologya rastenii
Publication
2016
Volume/pages
63:5(2016), p. 624-635
Full text (Publishers DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Record
Identification
Creation 22.09.2016
Last edited 23.09.2016
To cite this reference