Title
Container throughput time series forecasting using a hybrid approachContainer throughput time series forecasting using a hybrid approach
Author
Faculty/Department
Faculty of Applied Economics
Faculty of Law
Research group
Government and Law
Faculteit Toegepaste Economische Wetenschappen
Publication type
conferenceObject
Publication
Berlin :Springer, [*]
Subject
Economics
Source (book)
Proceedings of the 2015 Chinese Intelligent Systems Conference, October 17-18, 2015, Yangzhou, China / Jia, Yingmin
Source (series)
Lecture notes in electrical engineering ; 359
ISSN
1876-1100
ISBN - Hoofdstuk
978-3-662-48384-8
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Abstract
This paper proposed a novel two-stage hybrid container throughput forecasting model. Time series in reality exhibits both linear and nonlinear characteristics and individual models are not able to describe the two features simultaneously. Therefore, we combine linear model SARIMA (seasonal autoregressive integrated moving average) and nonlinear model ANN (artificial neural network). In order to break through the limitations of traditional hybrid models, based on the identified parameters of SARIMA in first stage, the structures of several ANN in second stage could be decided. Finally, we validate the proposed hybrid model 5 performs best with case study in Shanghai port.