Publication
Title
Electrochemical behavior of electrodeposited nanoporous Pt catalysts for the oxygen reduction reaction
Author
Abstract
Nanoporous Pt based nanoparticles (NP's) are promising fuel cell catalysts due to their high surface area and increased electrocatalytic activity toward the ORR In this work a direct double-pulse electrodeposition procedure at room temperature is applied to obtain dendritic Pt structures (89 nm diameter) with a high level of porosity (ca. 25%) and nanopores of 2 nm protruding until the center of the NP's. The particle morphology is characterized using aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and electron tomography (ET) combined with field emission scanning electron microscopy (FESEM) and macroscopic electrochemical measurements to assess their activity and stability toward the ORR. Macroscopic determination of the active surface area through hydrogen UPD measurements in combination with FESEM and ET showed that a considerable amount of the active sites inside the pores of the low overpotential NP's were accessible to oxygen species. As a result of this accessibility, up to a 9-fold enhancement of the Pt mass corrected ORR activity at 0.85 V vs RHE was observed at the highly porous structures. After successive potential cycling upward to 1.5 V vs RHE in a deaerated HClO4 solution a negative shift of 71 mV in half-wave potential occurred. This decrease in ORR activity could be correlated to the partial collapse of the nanopores, visible in both the EASA values and 3D ET reconstructions.
Language
English
Source (journal)
ACS catalysis. - -
Publication
2016
ISSN
2155-5435
DOI
10.1021/ACSCATAL.6B00668
Volume/pages
6 :9 (2016) , p. 5856-5864
ISI
000382714000025
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Colouring Atoms in 3 Dimensions (COLOURATOM).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 06.10.2016
Last edited 09.10.2023
To cite this reference