Publication
Title
Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys
Author
Abstract
Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed. (C) 2016 Elsevier Inc. All rights reserved.
Language
English
Source (journal)
Materials characterization. - New York
Publication
New York : 2016
ISSN
1044-5803
DOI
10.1016/J.MATCHAR.2016.06.007
Volume/pages
118 (2016) , p. 352-362
ISI
000383292000042
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 21.11.2016
Last edited 09.10.2023
To cite this reference