Publication
Title
Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau
Author
Abstract
Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the landatmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green-up date showed a stronger negative partial correlation with daily minimum temperature (Tmin) than with maximum temperature (Tmax) before the growing season (preseason henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin, but negatively with Tmax. A 1-K increase in preseason Tmin advanced green-up date by 4 days (P < 0.05) and in summer enhanced greenness by 3.6% relative to the mean greenness during 20002004 (P < 0.01). In contrast, increases in preseason Tmax did not advance green-up date (P > 0.10) and higher summer Tmax even reduced greenness by 2.6% K−1 (P < 0.05). The stimulating effects of increasing Tmin were likely caused by reduced low temperature constraints, and the apparent negative effects of higher Tmax on greenness were probably due to the accompanying decline in water availability. The dominant enhancing effect of nighttime warming indicates that climatic warming will probably have stronger impact on TP ecosystems than on apparently similar Arctic ecosystems where vegetation is controlled mainly by Tmax. Our results are crucial for future improvements of dynamic vegetation models embedded in the Earth System Models which are being used to describe the behavior of the Asian monsoon. The results are significant because the state of the vegetation on the TP plays an important role in steering the monsoon.
Language
English
Source (journal)
Global change biology. - Oxford, 1995, currens
Publication
Oxford : Blackwell , 2016
ISSN
1354-1013 [print]
1365-2486 [online]
DOI
10.1111/GCB.13301
Volume/pages
22 :9 (2016) , p. 3057-3066
ISI
000381077300010
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Global Ecosystem Functioning and Interactions with Global Change.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 16.02.2017
Last edited 09.10.2023
To cite this reference