Publication
Title
A nanofabricated, monolithic, path-separated electron interferometer
Author
Abstract
Progress in nanofabrication technology has enabled the development of numerous electron optic elements for enhancing image contrast and manipulating electron wave functions. Here, we describe a modular, self-aligned, amplitude-division electron interferometer in a conventional transmission electron microscope. The interferometer consists of two 45-nm-thick silicon layers separated by 20 mu m. This interferometer is fabricated from a single-crystal silicon cantilever on a transmission electron microscope grid by gallium focused-ion-beam milling. Using this interferometer, we obtain interference fringes in a Mach-Zehnder geometry in an unmodified 200 kV transmission electron microscope. The fringes have a period of 0.32 nm, which corresponds to the [111] lattice planes of silicon, and a maximum contrast of 15%. We use convergent-beam electron diffraction to quantify grating alignment and coherence. This design can potentially be scaled to millimeter-scale, and used in electron holography. It could also be applied to perform fundamental physics experiments, such as interactionfree measurement with electrons.
Language
English
Source (journal)
Scientific reports. - London, 2011, currens
Publication
London : Nature Publishing Group , 2017
ISSN
2045-2322
DOI
10.1038/S41598-017-01466-0
Volume/pages
7 (2017) , 10 p.
Article Reference
1677
ISI
000400886100017
Pubmed ID
28490745
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 12.06.2017
Last edited 09.10.2023
To cite this reference