Publication
Title
Supramolecular thermoplastics and thermoplastic elastomer materials with self-healing ability based on oligomeric charged triblock copolymers
Author
Abstract
Supramolecular polymeric materials constitute a unique class of materials held together by non-covalent interactions. These dynamic supramolecular interactions can provide unique properties such as a strong decrease in viscosity upon relatively mild heating, as well as self-healing ability. In this study we demonstrate the unique mechanical properties of phase-separated electrostatic supramolecular materials based on mixing of low molar mass, oligomeric, ABA-triblock copolyacrylates with oppositely charged outer blocks. In case of well-chosen mixtures and block lengths, the charged blocks are phase separated from the uncharged matrix in a hexagonally packed nanomorphology as observed by transmission electron microscopy. Thermal and mechanical analysis of the material shows that the charged sections have a T-g closely beyond room temperature, whereas the material shows an elastic response at temperatures far above this T-g ascribed to the electrostatic supramolecular interactions. A broad set of materials having systematic variations in triblock copolymer structures was used to provide insights in the mechanical properties and and self-healing ability in correlation with the nanomorphology of the materials.
Language
English
Source (journal)
NPG Asia materials
Publication
2017
ISSN
1884-4049
1884-4057
DOI
10.1038/AM.2017.63
Volume/pages
9 (2017) , 10 p.
Article Reference
e385
ISI
000402065300005
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 13.07.2017
Last edited 09.10.2023
To cite this reference