Publication
Title
Hierarchical hexagonal boron nitride nanowall-diamond nanorod heterostructures with enhanced optoelectronic performance
Author
Abstract
A superior field electron emission (FEE) source made from a hierarchical heterostructure, where two-dimensional hexagonal boron nitride (hBN) nanowalls were coated on one-dimensional diamond nanorods (DNRs), is fabricated using a simple and scalable method. FEE characteristics of hBN-DNR display a low turn-on field of 6.0 V mu m(-1), a high field enhancement factor of 5870 and a high life-time stability of 435 min. Such an enhancement in the FEE properties of hBN-DNR derives from the distinctive material combination, i.e., high aspect ratio of the heterostructure, good electron transport from the DNR to the hBN nanowalls and efficient field emission of electrons from the hBN nanowalls. The prospective application of these heterostructures is further evidenced by enhanced microplasma devices using hBN-DNR as a cathode, in which the threshold voltage was lowered to 350 V, affirming the role of hBN-DNR in the improvement of electron emission.
Language
English
Source (journal)
RSC advances
Publication
2016
ISSN
2046-2069
DOI
10.1039/C6RA19596B
Volume/pages
6 :93 (2016) , p. 90338-90346
ISI
000385451800044
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Project info
SOLARPAINT: Understanding the durability of light sensitive materials: transferring insights between solar cell physics and the chemistry of paintings.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 16.08.2017
Last edited 09.10.2023
To cite this reference