Publication
Title
New group-V elemental bilayers : a tunable structure model with four-, six-, and eight-atom rings
Author
Abstract
Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four-and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.
Language
English
Source (journal)
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
Publication
New York, N.Y : American Physical Society , 2017
ISSN
2469-9969 [online]
2469-9950 [print]
DOI
10.1103/PHYSREVB.96.035123
Volume/pages
96 :3 (2017) , 8 p.
Article Reference
035123
ISI
000405363900005
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
CalcUA as central calculation facility: supporting core facilities.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 17.08.2017
Last edited 22.01.2024
To cite this reference