Publication
Title
Temperature increase reduces global yields of major crops in four independent estimates
Author
Abstract
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop-and region-specific adaptation strategies to ensure food security for an increasing world population.
Language
English
Source (journal)
Proceedings of the National Academy of Sciences of the United States of America. - Washington, D.C.
AMERICA
Publication
Washington, D.C. : 2017
ISSN
0027-8424 [Print]
1091-6490 [Online]
DOI
10.1073/PNAS.1701762114
Volume/pages
114 :35 (2017) , p. 9326-9331
ISI
000408536000041
Pubmed ID
28811375
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Effects of phosphorus limitations on Life, Earth system and Society (IMBALANCE-P).
Global Ecosystem Functioning and Interactions with Global Change.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 03.10.2017
Last edited 09.10.2023
To cite this reference