Publication
Title
Glacial meltwater and primary production are drivers of strong uptake in fjord and coastal waters adjacent to the Greenland Ice Sheet
Author
Abstract
The Greenland Ice Sheet releases large amounts of freshwater, which strongly influences the physical and chemical properties of the adjacent fjord systems and continental shelves. Glacial meltwater input is predicted to strongly increase in the future, but the impact of meltwater on the carbonate dynamics of these productive coastal systems remains largely unquantified. Here we present seasonal observations of the carbonate system over the year 2013 in the surface waters of a west Greenland fjord (Godthåbsfjord) influenced by tidewater outlet glaciers. Our data reveal that the surface layer of the entire fjord and adjacent continental shelf are undersaturated in CO2 throughout the year. The average annual CO2 uptake within the fjord is estimated to be 65 g C m−2 yr−1, indicating that the fjord system is a strong sink for CO2. The largest CO2 uptake occurs in the inner fjord near to the Greenland Ice Sheet and high glacial meltwater input during the summer months correlates strongly with low pCO2 values. This strong CO2 uptake can be explained by the thermodynamic effect on the surface water pCO2 resulting from the mixing of fresh glacial meltwater and ambient saline fjord water, which results in a CO2 uptake of 1.8 mg C kg−1 of glacial ice melted. We estimated that 28% of the CO2 uptake can be attributed to the input of glacial meltwater, while the remaining part is due to high primary production. Our findings imply that glacial melt\-water is an important driver for undersaturation in CO2 in fjord and coastal waters adjacent to large ice sheets.
Language
English
Source (journal)
Biogeosciences
Publication
2015
ISSN
1726-4170
1726-4189
DOI
10.5194/BG-12-2347-2015
Volume/pages
12 :8 (2015) , p. 2347-2363
ISI
000353840500005
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 31.10.2017
Last edited 25.01.2023
To cite this reference