Publication
Title
Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field
Author
Abstract
The Wigner-Liouville equation is reformulated using a spectral decomposition of the classical force field instead of the potential energy. The latter is shown to simplify the Wigner-Liouville kernel both conceptually and numerically as the spectral force Wigner-Liouville equation avoids the numerical evaluation of the highly oscillatory Wigner kernel which is nonlocal in both position and momentum. The quantum mechanical evolution is instead governed by a term local in space and non-local in momentum, where the non locality in momentum has only a limited range. An interpretation of the time evolution in terms of two processes is presented; a classical evolution under the influence of the averaged driving field, and a probability-preserving quantum-mechanical generation and annihilation term. Using the inherent stability and reduced complexity, a direct deterministic numerical implementation using Chebyshev and Fourier pseudo-spectral methods is detailed. For the purpose of illustration, we present results for the time evolution of a one-dimensional resonant tunneling diode driven out of equilibrium. (C) 2017 Elsevier Inc. All rights reserved.
Language
English
Source (journal)
Journal of computational physics. - New York
Publication
New York : 2017
ISSN
0021-9991
DOI
10.1016/J.JCP.2017.08.059
Volume/pages
350 (2017) , p. 314-325
ISI
000413379000016
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 07.11.2017
Last edited 09.10.2023
To cite this reference