Publication
Title
Normal and skewed phosphorene nanoribbons in combined magnetic and electric fields
Author
Abstract
The energy spectrum and eigenstates of single-layer black phosphorus nanoribbons in the presence of a perpendicular magnetic field and an in-plane transverse electric field are investigated by means of a tight-binding method, and the effect of different types of edges is examined analytically. A description based on a continuum model is proposed using an expansion of the tight-binding model in the long-wavelength limit. Thewave functions corresponding to the flatband part of the spectrum are obtained analytically and are shown to agree well with the numerical results from the tight-binding method for both narrow (10 nm) and wide (100 nm) nanoribbons. Analytical expressions for the critical magnetic field at which Landau levels are formed and the ranges of wave numbers in the dispersionless flatband segments in the energy spectra are derived. We examine the evolution of the Landau levels when an in-plane lateral electric field is applied, and we determine analytically how the edge states shift withmagnetic field. For wider nanoribbons, the conductance is shown to have a characteristic staircase shape in combined magnetic and electric fields. Some of the stairs in zigzag and skewed armchair nanoribbons originate from edge states that are found in the band gap.
Language
English
Source (journal)
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
Publication
New York, N.Y : American Physical Society , 2017
ISSN
2469-9969 [online]
2469-9950 [print]
DOI
10.1103/PHYSREVB.96.125434
Volume/pages
96 :12 (2017) , 11 p.
Article Reference
125434
ISI
000411572400008
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 07.11.2017
Last edited 04.03.2024
To cite this reference