Publication
Title
Controlled growth of supported ZnO inverted nanopyramids with downward pointing tips
Author
Abstract
High purity porous ZnO nanopyramids with controllable properties are grown on their tips on Si(100) substrates by means of a catalyst-free vapor phase deposition route in a wet oxygen reaction environment. The system degree of preferential [001] orientation, as well as nanopyramid size, geometrical shape, and density distribution, can be finely tuned by varying the growth temperature between 300 and 400 °C, whereas higher temperatures lead to more compact systems with a three-dimensional (3D) morphology. A growth mechanism of the obtained ZnO nanostructures based on a self-catalytic vaporsolid (VS) mode is proposed, in order to explain the evolution of nanostructure morphologies as a function of the adopted process conditions. The results obtained by a thorough chemico-physical characterization enable us to get an improved control over the properties of ZnO nanopyramids grown by this technique. Taken together, they are of noticeable importance not only for fundamental research on ZnO nanomaterials with controlled nano-organization but also to tailor ZnO functionalities in view of various potential applications.
Language
English
Source (journal)
Crystal growth & design. - -
Publication
2018
ISSN
1528-7483
DOI
10.1021/ACS.CGD.8B00198
Volume/pages
18 :4 (2018) , p. 2579-2587
ISI
000429508200073
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 12.03.2018
Last edited 09.10.2023
To cite this reference