Publication
Title
The development of an autonomous navigation system with optimal control of an UAV in partly unknown indoor environment
Author
Abstract
This paper presents an autonomous methodology for a low-cost commercial AR.Drone 2.0 in partly unknown indoor flight using only on-board visual and internal sensing. Novelty lies in: (i) the development of a position estimation method using sensor fusion in a structured environment. This localization method presents how to get the UAV localization states (position and orientation), through a sensor fusion scheme, dealing with data provided by an optical sensor and an inertial measurement unit (IMU). Such a data fusion scheme takes also in to account the time delay present in the camera signal due to the communication protocols; (ii) improved potential field method which is capable of performing obstacle avoiding in an unknown environment and solving the non reachable goal problem; and (iii) the design and implementation of an optimal proportional - integral - derivative (PID) controller based on a novel multi-objective particle swarm optimization with an accelerated update methodology tracking such reference trajectories, thus characterizing a cascade controller. Experimental results validate the effectiveness of the proposed approach.
Language
English
Source (journal)
Mechatronics. - Oxford
Publication
Oxford : 2018
ISSN
0957-4158
DOI
10.1016/J.MECHATRONICS.2017.11.014
Volume/pages
49 (2018) , p. 187-196
ISI
000425199700017
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 29.03.2018
Last edited 09.10.2023
To cite this reference