Publication
Title
Transcriptome profiling of HepG2 cells exposed to the flame retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO)
Author
Abstract
The flame retardant, 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO), has been receiving great interest given its superior fire protection properties, and its predicted low level of persistence, bioaccumulation, and toxicity. However, empirical toxicological data that are essential for a complete hazard assessment are severely lacking. In this study, we attempted to identify the potential toxicological modes of action by transcriptome (RNA-seq) profiling of the human liver hepatocellular carcinoma cell line, HepG2. Such insight may help in identifying compounds of concern and potential toxicological phenotypes. DOPO was found to have little cytotoxic potential, with lower effective concentrations compared to other flame retardants studied in the same cell line. Differentially expressed genes revealed a wide range of molecular effects including changes in protein, energy, DNA, and lipid metabolism, along with changes in cellular stress response pathways. In response to 250 μM DOPO, the most perturbed biological processes were fatty acid metabolism, androgen metabolism, glucose transport, and renal function and development, which is in agreement with other studies that observed similar effects of other flame retardants in other species. However, treatment with 2.5 μM DOPO resulted in very few differentially expressed genes and failed to indicate any potential effects on biology, despite such concentrations likely being orders of magnitude greater than would be encountered in the environment. This, together with the low levels of cytotoxicity, supports the potential replacement of the current flame retardants by DOPO, although further studies are needed to establish the nephrotoxicity and endocrine disruption of DOPO.
Language
English
Source (journal)
Toxicology Research
Publication
2018
ISSN
2045-452X
2045-4538
Volume/pages
7:3(2018), p. 492-502
ISI
000431958400016
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 25.04.2018
Last edited 15.07.2021
To cite this reference