Publication
Title
Exposure to organophosphate flame retardants of hotel room attendants in Wuhan City, China
Author
Abstract
Indoor environments provide sources of exposure to organophosphate flame retardants (PFRs), which are artificially synthesized fire-protecting agents used as additives in interior products. As public spaces, hotels are required to meet stricter fire-precaution criteria. As such, room attendants may be exposed to higher levels of PFRs. Our goal was to characterize the exposure of hotel room attendants to PFRs by measuring metabolites in their urine and the corresponding parent PFRs in dust and hand-wipes collected from 27 hotels located in Wuhan City, China. The exposure of the attendants was found to be omnipresent: urinary metabolites of PFRs, such as DPHP (diphenyl phosphate), BDCIPP (bis(1,3-dichloro-2-propyl) phosphate), and DoCP (di-o-cresyl phosphate) & DpCP (di-p-cresyl phosphate) were detected with high frequency (87%, 79% and 87%, respectively). We observed that metabolites in post-shift urine were consistently present at higher levels than those in the first morning voids (p < 0.05 for BDCIPP and DPHP). Regarding external exposure, 10 PFRs were determined in both dust samples and hand-wipes, with TCIPP (tris(2-chloroisopropyl) phosphate) being the most abundant compound in both matrices. The levels of PFRs in hand-wipes and dust samples were not correlated. PFRs in dust and their corresponding urinary metabolites were not significantly correlated, while a moderate significant correlation of TDCIPP (tris(1,3-dichloro-2-propyl) phosphate) in hand-wipes and its urinary metabolite, BDCIPP, was observed in both morning void samples (p = 0.01) and post-shift urine (p = 0.002). Moreover, we found that participants from high-rise buildings (defined as > 7 stories) had significantly higher BDCIPP and DPHP concentrations than those from low-rise buildings. A possible reason is that high-rise buildings may use high-grade fireproof building materials to meet stricter fire restrictions. Overall, these results indicate that PFRs exposure in hotels is a contributor to the personal exposure of hotel room attendants. (C) 2018 Elsevier Ltd. All rights reserved.
Language
English
Source (journal)
Environmental pollution. - London
Publication
London : 2018
ISSN
0269-7491
Volume/pages
236 (2018) , p. 626-633
ISI
000429187500065
Pubmed ID
29433103
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 04.05.2018
Last edited 20.09.2021
To cite this reference