Publication
Title
Impact of priming on global soil carbon stocks
Author
Abstract
Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models used for future projections. Here, we show that priming can be incorporated based on a simple equation calibrated from incubation and verified against independent litter manipulation experiments in the global land surface model, ORCHIDEE. When incorporated into ORCHIDEE, priming improved the model's representation of global soil carbon stocks and decreased soil carbon sequestration by 51% (12 +/- 3 Pg C) during the period 1901-2010. Future projections with the same model across the range of CO2 and climate changes defined by the IPCC-RCP scenarios reveal that priming buffers the projected changes in soil carbon stocks-both the increases due to enhanced productivity and new input to the soil, and the decreases due to warming-induced accelerated decomposition. Including priming in Earth system models leads to different projections of soil carbon changes, which are challenging to verify at large spatial scales.
Language
English
Source (journal)
Global change biology. - Oxford, 1995, currens
Publication
Oxford : Blackwell , 2018
ISSN
1354-1013 [print]
1365-2486 [online]
Volume/pages
24 :5 (2018) , p. 1873-1883
ISI
000428879800005
Pubmed ID
29365210
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Project info
Global Ecosystem Functioning and Interactions with Global Change.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 04.05.2018
Last edited 19.10.2021
To cite this reference