Publication
Title
Distinct responses of soil respiration to experimental litter manipulation in temperate woodland and tropical forest
Author
Abstract
Global change is affecting primary productivity in forests worldwide, and this, in turn, will alter long-term carbon (C) sequestration in wooded ecosystems. On one hand, increased primary productivity, for example, in response to elevated atmospheric carbon dioxide (CO2), can result in greater inputs of organic matter to the soil, which could increase C sequestration belowground. On other hand, many of the interactions between plants and microorganisms that determine soil C dynamics are poorly characterized, and additional inputs of plant material, such as leaf litter, can result in the mineralization of soil organic matter, and the release of soil C as CO2 during so-called priming effects. Until now, very few studies made direct comparison of changes in soil C dynamics in response to altered plant inputs in different wooded ecosystems. We addressed this with a cross-continental study with litter removal and addition treatments in a temperate woodland (Wytham Woods) and lowland tropical forest (Gigante forest) to compare the consequences of increased litterfall on soil respiration in two distinct wooded ecosystems. Mean soil respiration was almost twice as high at Gigante (5.0molCO(2)m(-2)s(-1)) than at Wytham (2.7molCO(2)m(-2)s(-1)) but surprisingly, litter manipulation treatments had a greater and more immediate effect on soil respiration at Wytham. We measured a 30% increase in soil respiration in response to litter addition treatments at Wytham, compared to a 10% increase at Gigante. Importantly, despite higher soil respiration rates at Gigante, priming effects were stronger and more consistent at Wytham. Our results suggest that in situ priming effects in wooded ecosystems track seasonality in litterfall and soil respiration but the amount of soil C released by priming is not proportional to rates of soil respiration. Instead, priming effects may be promoted by larger inputs of organic matter combined with slower turnover rates.
Language
English
Source (journal)
Ecology and evolution. - Oxford, 2011, currens
Publication
Oxford : Wiley-Blackwell , 2018
ISSN
2045-7758
DOI
10.1002/ECE3.3945
Volume/pages
8 :7 (2018) , p. 3787-3796
ISI
000430119900020
Pubmed ID
29686858
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 04.05.2018
Last edited 02.10.2024
To cite this reference