Title
|
|
|
|
Tight-binding model for borophene and borophane
|
|
Author
|
|
|
|
|
|
Abstract
|
|
|
|
Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene. |
|
|
Language
|
|
|
|
English
|
|
Source (journal)
|
|
|
|
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
|
|
Publication
|
|
|
|
New York, N.Y
:
American Physical Society
,
2018
|
|
ISSN
|
|
|
|
2469-9969
[online]
2469-9950
[print]
|
|
DOI
|
|
|
|
10.1103/PHYSREVB.97.125424
|
|
Volume/pages
|
|
|
|
97
:12
(2018)
, 5 p.
|
|
Article Reference
|
|
|
|
125424
|
|
ISI
|
|
|
|
000427983700004
|
|
Medium
|
|
|
|
E-only publicatie
|
|
Full text (Publisher's DOI)
|
|
|
|
|
|
Full text (open access)
|
|
|
|
|
|