Title
|
|
|
|
Strain mapping in single-layer two-dimensional crystals via Raman activity
| |
Author
|
|
|
|
| |
Abstract
|
|
|
|
By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono-and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X = S, Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization. |
| |
Language
|
|
|
|
English
| |
Source (journal)
|
|
|
|
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
| |
Publication
|
|
|
|
New York, N.Y
:
American Physical Society
,
2018
| |
ISSN
|
|
|
|
2469-9969
[online]
2469-9950
[print]
| |
DOI
|
|
|
|
10.1103/PHYSREVB.97.115427
| |
Volume/pages
|
|
|
|
97
:11
(2018)
, 11 p.
| |
Article Reference
|
|
|
|
115427
| |
ISI
|
|
|
|
000427799300006
| |
Medium
|
|
|
|
E-only publicatie
| |
Full text (Publisher's DOI)
|
|
|
|
| |
Full text (open access)
|
|
|
|
| |
|