Publication
Title
Modeling and analysis of vapour cloud explosions knock-on events by using a Petri-net approach
Author
Abstract
If flammable gas is mixed with air, and the mixture is ignited, it is possible to form a vapor cloud explosion (VCE) which may be very destructive, and easy to trigger a domino effect of accidents because of its large extent of impact. A VCE accident may induce secondary VCE accidents, then tertiary VCE accidents, and so on. This is called the cascading effect of VCE accidents, which requires an understanding of probabilities and propagation patterns to prevent and mitigate the potential damages. In this work, a methodology based on Petri-net is proposed to model the cascading effect of VCE accidents and perform probability analysis, taking the mutual influence between the accidents into account. The deficiency in probability analysis of VCE accidents is discussed. According to the limits of states and their changes which reflect characteristics of VCE propagation, a Petri-net approach is provided for modeling and analysis of VCE cascading effect, and the modeling approach and analysis process of VCE cascading effect are presented. The application and efficacy of the methodology are demonstrated via an example of VCE accidents occurring in a gasoline tank storage area. The results show that the developed methodology can effectively reveal the propagation patterns of VCEs cascading and calculate the respective probabilities of VCE accidents.
Language
English
Source (journal)
Safety science. - Amsterdam, 1991, currens
Publication
Amsterdam : 2018
ISSN
0925-7535
DOI
10.1016/J.SSCI.2018.04.019
Volume/pages
108 (2018) , p. 188-195
ISI
000436885000016
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 08.06.2018
Last edited 02.10.2024
To cite this reference