Publication
Title
High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers
Author
Abstract
Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to similar to 90 K with onset carrier densities as high as 4 x 10(12) cm(-2). This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.
Language
English
Source (journal)
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
Publication
New York, N.Y : American Physical Society , 2018
ISSN
2469-9969 [online]
2469-9950 [print]
DOI
10.1103/PHYSREVB.97.174503
Volume/pages
97 :17 (2018) , 7 p.
Article Reference
174503
ISI
000431986100002
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 12.06.2018
Last edited 09.10.2023
To cite this reference