Publication
Title
Adhesive interactions between milk fat globule membrane and Lactobacillus rhamnosus GG inhibit bacterial attachment to Caco-2 TC7 intestinal cell
Author
Abstract
Milk is the most popular matrix for the delivery of lactic acid bacteria, but little is known about how milk impacts bacterial functionality. Here, the adhesion mechanisms of Lactobacillus rhamnosus GG (LGG) surface mutants to a milk component, the milk fat globule membrane (MFGM), were compared using atomic force microscopy (AFM). AFM results revealed the key adhesive role of the LGG SpaCBA pilus in relation to MFGM. A LGG mutant without exopolysaccharides but with highly exposed pili improved the number of adhesive events between LGG and MFGM compared to LGG wild type (WT). In contrast, the number of adhesive events decreased significantly for a LGG mutant without SpaCBA pill. Moreover, the presence of MFGM in the dairy matrix was found to decrease significantly the bacterial attachment ability to Caco-2 TC7 cells. This work thus demonstrated a possible competition between LGG adhesion to MFGM and to epithelial intestinal cells. This competition could negatively impact the adhesion capacity of LGG to intestinal cells in vivo, but requires further substantiation. (C) 2018 Elsevier B.V. All rights reserved.
Language
English
Source (journal)
Colloids and surfaces: B : biointerfaces. - Amsterdam
Publication
Amsterdam : 2018
ISSN
0927-7765
Volume/pages
167(2018), p. 44-53
ISI
000434747200006
Pubmed ID
29626719
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 10.07.2018
Last edited 14.09.2021
To cite this reference