Title
|
|
|
|
First-principles study of the stability and edge stress of nitrogen-decorated graphene nanoribbons
|
|
Author
|
|
|
|
|
|
Abstract
|
|
|
|
Edge functionalization of graphene nanoribbons with nitrogen atoms for various adatom configurations at armchair and zigzag edges are investigated. We provide comprehensive information on the electronic and magnetic properties and investigate the stability of the various systems. Two types of rippling of the nanoribbons, namely edge and bulk rippling depending on the sign of edge stress induced at the edge, are found. They are found to play the decisive role for the stability of the structures. We also propose a type of edge decoration in which every third nitrogen adatom at the zigzag edges is replaced by an oxygen atom. In this way, the electron count is compatible with a full aromatic structure, leading to additional stability and a disappearance of magnetism that is usually associated with zigzag nanoribbons. |
|
|
Language
|
|
|
|
English
|
|
Source (journal)
|
|
|
|
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
|
|
Publication
|
|
|
|
New York, N.Y
:
American Physical Society
,
2018
|
|
ISSN
|
|
|
|
2469-9969
[online]
2469-9950
[print]
|
|
DOI
|
|
|
|
10.1103/PHYSREVB.97.235436
|
|
Volume/pages
|
|
|
|
97
:23
(2018)
, 7 p.
|
|
Article Reference
|
|
|
|
235436
|
|
ISI
|
|
|
|
000436192300006
|
|
Medium
|
|
|
|
E-only publicatie
|
|
Full text (Publisher's DOI)
|
|
|
|
|
|
Full text (open access)
|
|
|
|
|
|