Publication
Title
Layer- and strain-dependent optoelectronic properties of hexagonal AlN
Author
Abstract
Motivated by the recent synthesis of layered hexagonal aluminum nitride (h-AlN), we investigate its layer- and strain-dependent electronic and optical properties by using first-principles methods. Monolayer h-AlN is a wide-gap semiconductor, which makes it interesting especially for usage in optoelectronic applications. The optical spectra of 1-, 2-, 3-, and 4-layered h-AlN indicate that the prominent absorption takes place outside the visible-light regime. Within the ultraviolet range, absorption intensities increase with the number of layers, approaching the bulk case. On the other hand, the applied tensile strain gradually redshifts the optical spectra. The many-body effects lead to a blueshift of the optical spectra, while exciton binding is also observed for 2D h-AlN. The possibility of tuning the optoelectronic properties via thickness and/or strain opens doors to novel technological applications of this promising material.
Language
English
Source (journal)
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
Publication
New York, N.Y : American Physical Society , 2015
ISSN
2469-9969 [online]
2469-9950 [print]
DOI
10.1103/PHYSREVB.92.165408
Volume/pages
92 :16 (2015) , 8 p.
Article Reference
165408
ISI
000362493600008
Medium
E-only publicatie
Full text (Publisher's DOI)
UAntwerpen
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 05.11.2018
Last edited 24.01.2023
To cite this reference