Publication
Title
Cavitand-decorated silicon columnar nanostructures for the surface recognition of volatile nitroaromatic compounds
Author
Abstract
Nanocolumnar Si substrates (porous silicon (PSi)) have been functionalized With a quinoxaline-bridged (EtQxBox) cavitand in which the quinoxgine moieties are bonded to each other through four ethylendioxy bridges at the upper rim of the cavity. The receptor, which is known to selectively complex aromatic volatile organic compounds (VOCs) even in the presence of aliphatic compounds, has been covgently anchored to PSi. The larger surface area of PSi, a. compared to that of flat substrates, allowed one to study the recognition process of the surface-grafted receptors through different techniques: Founer-transform infrared spectroscopy, thermal desorption, and X-ray photoelectron spectroscopy. The experiments proved that surface-grafted cavitands retain the recognition capability toward aromatic VOCs. In addition, the affinities of EtQxBox for various aromatic compounds (i.e, benzene, toluene, nitrobenzene, and p-nitrotoluene) have been studied combining density functional theory computations and thermal desorption experiments. Computational data based on the crystal structures of the complexes indicate that this cavitand possesses a higher affinity toward aromatic nitro-compounds compared to benzene and toluene, making this receptor of particular interest for the detection of explosive taggants. The results of computational studies have been validated also for the surface-grafted receptor through competitive recognition experiments. These experiments showed that EtQxBox-functionalized PSi can recognize nitrobenzene in the presence of a significant excess of aromatic vapors such as benzene (1:300) or toluene (1:100).
Language
English
Source (journal)
ACS Omega
Publication
American Chemical Society , 2018
ISSN
2470-1343
DOI
10.1021/ACSOMEGA.8B01018
Volume/pages
3 :8 (2018) , p. 9172-9181
ISI
000444182900058
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
DOGGIES: Detection of Olfactory traces by orthoGonal Gas identification technologIES
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 09.11.2018
Last edited 02.10.2024
To cite this reference