Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals
The search for environment-friendly, economical and healthy alternatives to agrochemicals tempted us to evaluate the potential of naturally occurring actinomycetes to improve soil properties, plant growth and photosynthesis, grain yield and chemical composition of economically important cereals (wheat, barley, oat, maize and sorghum). To this end, actinomycetes were isolated from soils of local cereals fields, then their biological activities, namely antibacterial, antiprotozoal, antioxidant, and phenolic and flavonoid contents were evaluated. The four most active isolates (9, 16, 24 and 26) were selected and used for enriching the soils until seed set. Each isolate was separately applied. Seeds of the selected cereals were grown in the actinomycete-enriched soils. The soils were analyzed for their electrical conductivity, pH values, total phenolics, organic matter and mineral content. At the vegetative stage, chlorophyll content and gas exchange rates were measured. Mature seeds were then harvested, the yield was evaluated and the seeds were analyzed for their primary and secondary metabolites. The selected isolates improved the grain yield in all tested cereals and most noticeably in barley and maize as compared to control counterparts. These positive effects were probably a result of increased carbon gain due to higher chlorophyll and photosynthetic rate. Isolate 26 showed the highest effect on grains composition profiles followed by the isolate 16. Phenolics and sugars of all grains increased by treatment with the tested isolates. Isolate 26 was the most effective in this regard. All isolates generally improved vitamins, amino acids and organic acids contents in grains. However, fatty acids profile showed a decrease in the content of all measured fatty acids by isolate 26 and an increase in the contents by isolate 16. These results emphasize the potential of actinomycete enrichment as an alternative to agrochemicals and strongly suggest that they can be used in organic farming. (C) 2018 Published by Elsevier B.V.
Source (journal)
The science of the total environment. - Amsterdam
Amsterdam : 2019
651 :2 (2019) , p. 2787-2798
Pubmed ID
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
Research group
Project info
The role of sugar supply and signalling in the regulation of maize leaf growth.
Publication type
Publications with a UAntwerp address
External links
Web of Science
Creation 10.12.2018
Last edited 23.08.2022
To cite this reference