Publication
Title
Optimization of non-thermal plasma treatment in an in vivo model organism
Author
Abstract
Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS) upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application.
Language
English
Source (journal)
PLoS ONE
Publication
2016
ISSN
1932-6203
Volume/pages
11:8(2016), 10 p.
Article Reference
e0160676
ISI
000381374200055
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Publication type
Subject
External links
Web of Science
Record
Identification
Creation 12.12.2018
Last edited 26.07.2021