Publication
Title
Characterization of a nitrogen gliding arc plasmatron using optical emission spectroscopy and high-speed camera
Author
Abstract
A gliding arc plasmatron (GAP), which is very promising for purification and gas conversion, is characterized in nitrogen using optical emission spectroscopy and high-speed photography, because the cross sections of electron impact excitation of N2 are well known. The gas temperature (of about 5500 K), the electron density (up to 1.5  ×  1015 cm−3) and the reduced electric field (of about 37 Td) are determined using an absolutely calibrated intensified charge-coupled device (ICCD) camera, equipped with an in-house made optical arrangement for simultaneous two-wavelength diagnostics, adapted to the transient behavior of a GA channel in turbulent gas flow. The intensities of nitrogen molecular emission bands, N2(CB,00) as well as (BX,00), are measured simultaneously. The electron density and the reduced electric field are determined at a spatial resolution of 30 µm, using numerical simulation and measured emission intensities, applying the Abel inversion of the ICCD images. The temporal behavior of the GA plasma channel and the formation of plasma plumes are studied using a high-speed camera. Based on the determined plasma parameters, we suggest that the plasma plume formation is due to the magnetization of electrons in the plasma channel of the GAP by an axial magnetic field in the plasma vortex.
Language
English
Source (journal)
Journal of physics: D: applied physics. - London
Publication
London : 2019
ISSN
0022-3727
DOI
10.1088/1361-6463/AAEFE4
Volume/pages
52 :6 (2019) , 12 p.
Article Reference
065201
ISI
000451745900001
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 07.01.2019
Last edited 02.10.2024
To cite this reference