Publication
Title
Influence of 4H-SiC substrate miscut on the epitaxy and microstructure of AlGaN/GaN heterostructures
Author
Abstract
AlGaN/GaN heterostructures were grown on on-axis and 2° off (0001) 4H-SiC substrates by metalorganic vapor phase epitaxy (MOVPE). Structural characterization was performed by transmission electron microscopy. The dislocation density, being greater in the on-axis case, is gradually reduced in the GaN layer and is forming dislocation loops in the lower region. Steps aligned along ̅ in the off-axis case give rise to simultaneous defect formation. In the on-axis case, an almost zero density of steps is observed, with the main origin of defects probably being the orientation mismatch at the grain boundaries between the small not fully coalesced AlN grains. V-shaped formations are observed in the AlN nucleation layer, but are more frequent in the off-axis case, probably enhanced by the presence of steps. These V-shaped formations are completely overgrown by the GaN layer, during the subsequent deposition, presenting AlGaN areas in the walls of the defect, indicating an inter-diffusion between the layers. Finally, at the AlGaN/GaN heterostructure surface in the on-axis case, V-shapes are observed, with the AlN spacer and AlGaN (21% Al) thickness on relaxed GaN exceeding the critical thickness for relaxation. On the other hand, no relaxation in the form of V-shape creation is observed in the off-axis case, probably due to the smaller AlGaN thickness (less than 21% Al). The AlN spacer layer, grown in between the heterostructure, presents a uniform thickness and clear interfaces.
Language
English
Source (journal)
Materials science in semiconductor processing. - Oxford
Publication
Oxford : 2019
ISSN
1369-8001
DOI
10.1016/J.MSSP.2018.11.008
Volume/pages
91 (2019) , p. 159-166
ISI
000454537700022
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
ESTEEM 2 - Enabling science and technology through European electron microscopy.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 17.01.2019
Last edited 04.03.2024
To cite this reference