Publication
Title
A generated property specification language for resilient multirobot missions
Author
Abstract
The use of robots is gaining considerable traction in several domains, since they are capable of assisting and replacing humans for everyday tasks. To harvest the full potential of robots, it must be possible to define missions for robots that are domain-specific, resilient, and collaborative. Currently, robot vendors provide low-level APIs to program such missions, making mission definition a task-specific and error-prone activity. There is a need for quick definition of new missions, by users that lack programming expertise, such as farmers and emergency workers. In this paper, we extend the existing FLYAQ platform to support the high-level specification of adaptive and highly-resilient missions. We present an extensible specification language that allows users to declaratively specify domain-specific constraints as properties of missions, thus complementing the existing FLYAQ mission language. This permits to move at runtime, the actual generation of low-level operations to satisfy the declaratively specified mission. We show how this specification language can be automatically generated from a domain-specific FLYAQ mission language by using the generative ProMoBox approach. Next, we show how mission goals are achieved taking mission properties into account, and how missions may change due to unexpected circumstances.
Language
English
Source (journal)
Lecture notes in computer science. - Berlin, 1973, currens
Source (book)
9th International Workshop on Software Engineering for Resilient Systems, (SERENE), SEP 04-05, 2017, Geneva, SWITZERLAND
Publication
Cham : Springer international publishing ag , 2017
ISBN
978-3-319-65948-0
978-3-319-65947-3
978-3-319-65947-3
DOI
10.1007/978-3-319-65948-0_4
Volume/pages
10479 (2017) , p. 45-61
ISI
000452448200004
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Project info
MBSE4 Mechatronics.
CO4Robots: Achieving Complex Collaborative Missions via Decentralized Control and Coordination of Interacting Robots
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 18.01.2019
Last edited 24.11.2024
To cite this reference