Publication
Title
Solution structure of mannobioses unravelled by means of Raman optical activity
Author
Abstract
Structural analysis of carbohydrates is a complicated endeavour, due to the complexity and diversity of the samples at hand. Herein, we apply a combined computational and experimental approach, employing molecular dynamics (MD) and density functional theory (DFT) calculations together NMR and Raman optical activity (ROA) measurements, in the structural study of three mannobiose disaccharides, consisting of two mannoses with varying glycosidic linkages. The disaccharide structures make up the scaffold of high mannose glycans and are therefore important targets for structural analysis. Based on the MD population analysis and NMR, the major conformers of each mannobiose were identified and used as input for DFT analysis. By systematically varying the solvent models used to describe water interacting with the molecules and applying overlap integral analysis to the resulting calculational ROA spectra, we found that a full quantum mechanical/molecular mechanical approach is required for an optimal calculation of the ROA parameters. Subsequent normal mode analysis of the predicted vibrational modes was attempted in order to identify possible marker bands for glycosidic linkages. However, the normal mode vibrations of the mannobioses are completely delocalised, presumably due to conformational flexibility in these compounds, rendering the identification of isolated marker bands unfeasible.
Language
English
Source (journal)
ChemPhysChem : a European journal of chemical physics and physical chemistry. - Weinheim, 2000 - 2015
Publication
Weinheim : Wiley-VCH , 2019
ISSN
1439-4235 [print]
1439-7641 [online]
DOI
10.1002/CPHC.201801172
Volume/pages
20 :5 (2019) , p. 695-705
ISI
000460333900008
Pubmed ID
30688397
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
4D Protein Structure.
CalcUA as central calculation facility: supporting core facilities.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 30.01.2019
Last edited 02.10.2024
To cite this reference