Title
|
|
|
|
Evolution of phosphorus-vacancy clusters in epitaxial germanium
|
|
Author
|
|
|
|
|
|
Abstract
|
|
|
|
The E centers (dopant-vacancy pairs) play a significant role in dopant deactivation in semiconductors. In order to gain insight into dopant-defect interactions during epitaxial growth of in situ phosphorus doped Ge, positron annihilation spectroscopy, which is sensitive to open-volume defects, was performed on Ge layers grown by chemical vapor deposition with different concentrations of phosphorus (similar to 1 x 10(18)-1 x 10(20) cm(-3)). Experimental results supported by first-principles calculations based on the two component density-functional theory gave evidence for the existence of mono-vacancies decorated by several phosphorus atoms as the dominant defect type in the epitaxial Ge. The concentration of vacancies increases with the amount of P-doping. The number of P atoms around the vacancy also increases, depending on the P concentration. The evolution of P-n-V clusters in Ge contributes significantly to the dopant deactivation. Published under license by AIP Publishing. |
|
|
Language
|
|
|
|
English
|
|
Source (journal)
|
|
|
|
Journal of applied physics / American Institute of Physics. - New York, N.Y., 1937, currens
|
|
Publication
|
|
|
|
New York, N.Y.
:
American Institute of Physics
,
2019
|
|
ISSN
|
|
|
|
0021-8979
[print]
1089-7550
[online]
|
|
DOI
|
|
|
|
10.1063/1.5054996
|
|
Volume/pages
|
|
|
|
125
:2
(2019)
, 6 p.
|
|
Article Reference
|
|
|
|
025701
|
|
ISI
|
|
|
|
000455922100057
|
|
Medium
|
|
|
|
E-only publicatie
|
|
Full text (Publisher's DOI)
|
|
|
|
|
|
Full text (publisher's version - intranet only)
|
|
|
|
|
|