Publication
Title
On the asymptotic behavior of the contaminated sample mean
Author
Abstract
An observation of a cumulative distribution function F with finite variance is said to be contaminated according to the inflated variance model if it has a large probability of coming from the original target distribution F, but a small probability of coming from a contaminating distribution that has the same mean and shape as F, though a larger variance. It is well known that in the presence of data contamination, the ordinary sample mean looses many of its good properties, making it preferable to use more robust estimators. It is insightful to see to what extent an intuitive estimator such as the sample mean becomes less favorable in a contaminated setting. In this paper, we investigate under which conditions the sample mean, based on a finite number of independent observations of F which are contaminated according to the inflated variance model, is a valid estimator for the mean of F. In particular, we examine to what extent this estimator is weakly consistent for the mean of F and asymptotically normal. As classical central limit theory is generally inaccurate to copewith the asymptotic normality in this setting, we invokemore general approximate central limit theory as developed in [3]. Our theoretical results are illustrated by a specific example and a simulation study.
Language
English
Source (journal)
MATHEMATICAL METHODS OF STATISTICS
Mathematical Methods of Statistics
Publication
2018
ISSN
1066-5307
DOI
10.3103/S106653071804004X
Volume/pages
27 :4 (2018) , p. 312-323
ISI
000457865200004
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 07.02.2019
Last edited 04.08.2023
To cite this reference