Publication
Title
In vivo preclinical molecular imaging of repeated exposure to an N-methyl-d-aspartate antagonist and a glutaminase inhibitor as potential glutamatergic modulators
Author
Abstract
Glutamate is the principal excitatory neurotransmitter in the brain and is at the base of a wide variety of neuropathologies, including epilepsy, autism, Fragile X, and obsessive compulsive disorder. Glutamate has also become the target for novel drugs in treatment and in fundamental research settings. However, much remains unknown on the working mechanisms of these drugs and the effects of chronic administration on the glutamatergic system. This study investigated the chronic effects of two glutamate-modulating drugs with imaging techniques to further clarify their working mechanisms for future research opportunities. Animals were exposed to saline (1 ml/kg), (5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) (0.3 mg/kg), or ebselen (10 mg/kg) for 7 consecutive days. At the sixth injection, animals underwent a positron emission tomography (PET)/computed tomography (CT) with (3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-11C-methyl-oxime) (ABP-688) to visualize the metabotropic G proteincoupled glutamate receptor 5 (mGluR5). After the seventh injection, animals underwent a magnetic resonance spectroscopy (MRS) scan to visualize glutamate and glutamine content. Afterward, results were verified by mGluR5 immunohistochemistry (IHC). PET/CT analysis revealed that animals receiving chronic MK-801 or ebselen had a significant (P < 0.05) higher binding potential (2.90 ± 0.47 and 2.87 ± 0.46, respectively) when compared with saline (1.97 ± 0.39) in the caudate putamen. This was confirmed by mGluR5 IHC, with 60.83% ± 6.30% of the area being highlighted for ebselen and 57.14% ± 9.23% for MK-801 versus 50.21% ± 5.71% for the saline group. MRS displayed significant changes on the glutamine level when comparing chronic ebselen (2.20 ± 0.40 µmol/g) to control (2.72 ± 0.34 µmol/g). Therefore, although no direct effects on glutamate were visualized, the changes in glutamine suggest changes in the total glutamate-glutamine pool. This highlights the potential of both drugs to modulate glutamatergic pathologies.
Language
English
Source (journal)
The journal of pharmacology and experimental therapeutics. - Baltimore, Md
Publication
Baltimore, Md : 2019
ISSN
0022-3565 [print]
1521-0103 [online]
DOI
10.1124/JPET.118.252635
Volume/pages
368 :3 (2019) , p. 382-390
ISI
000459179300005
Pubmed ID
30552293
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Image-guided decoding of mechanisms involved in healthy, accelerated and pathological aging.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 20.02.2019
Last edited 12.12.2024
To cite this reference