Publication
Title
Soluble CD59 is a novel biomarker for the prediction of obstructive chronic lung allograft dysfunction after lung transplantation
Author
Abstract
CD59 is a complement regulatory protein that inhibits membrane attack complex formation. A soluble form of CD59 (sCD59) is present in various body fluids and is associated with cellular damage after acute myocardial infarction. Lung transplantation (LTx) is the final treatment for end-stage lung diseases, however overall survival is hampered by chronic lung allograft dysfunction development, which presents itself obstructively as the bronchiolitis obliterans syndrome (BOS). We hypothesized that, due to cellular damage and activation during chronic inflammation, sCD59 serum levels can be used as biomarker preceding BOS development. We analyzed sCD59 serum concentrations in 90 LTx patients, of whom 20 developed BOS. We observed that BOS patients exhibited higher sCD59 serum concentrations at the time of diagnosis compared to clinically matched non-BOS patients (p = 0.018). Furthermore, sCD59 titers were elevated at 6 months post-LTx (p = 0.0020), when patients had no BOS-related symptoms. Survival-analysis showed that LTx patients with sCD59 titers = 400 pg/ml 6 months post-LTx have a significant (p < 0.0001) lower chance of BOS-free survival than patients with titers = 400 pg/ml, 32% vs. 80% respectively, which was confirmed by multivariate analysis (hazard ratio 6.2, p < 0.0001). We propose that circulating sCD59 levels constitute a novel biomarker to identify patients at risk for BOS following LTx.
Language
English
Source (journal)
Scientific reports. - London, 2011, currens
Publication
London : Nature Publishing Group , 2016
ISSN
2045-2322
DOI
10.1038/SREP26274
Volume/pages
6 (2016) , 7 p.
Article Reference
26274
ISI
000376361300001
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Publication type
Subject
External links
Web of Science
Record
Identifier
Creation 26.02.2019
Last edited 24.08.2024
To cite this reference